English Version            Русская версия

 [ Разделы сервера ]  [ Карта сервера ]  [ Новости сервера ] [ Обратная связь ]



Должно подразумеваться, что во всех случаях, с которыми мы имеем дело в этой книге, общая энергия в момент перед столкновением такая же, как энергия в момент после столкновения. Давайте, используем тот же пример с бильярдными шарами, который объяснялся выше. Сумма кинетической энергии каждого шара перед столкновением - ke1_initial и ke2_initial—равно KE_initial. Сумма кинетической энергии каждого шара после столкновения - ke1_final и ke2_final—равно KE_final. Закон сохранения энергии говорит нам, что конечная энергия есть то же самое, что и конечная энергия, то есть KE_initial = KE_final. Важно заметить, что мы говорим здесь об упругом столкновении. В упругом столкновении, сохраняются как кинетическая энергия, так и импульс. Мы не собираемся обращаться к неэластичному столкновению, в котором сохраняется только импульс (например, дождь прилипает к шару на воздухе, следовательно, масса объекта изменяется). Применение законов сохранения В этом разделе мы будем применять эти два закона сохранения, чтобы найти движение объектов после столкновения. Вы можете удивиться, зачем мы ввели эти законы сохранения. Причина, по которой мы собираемся применить их для нахождения движения объектов после столкновения в том, что мы ищем конструкции и отношения, которые позволят нам определить новые векторные скорости объектов после их столкновения. В этом разделе мы приходим к выражениям, которые могут сообщить нам новые векторные скорости двух столкнувшихся объектов. Мы будем применять эти уравнения в двух случаях: сталкиваются два прямоугольника и сталкиваются два шара. Давайте предположим, что два объекта, object1 и object2, двигаются навстречу друг другу. Объект object1 имеет массу m1 и векторную скорость vli, а object2 имеет массу m2 и векторную скорость v2i. Два объекта сталкиваются эластично. Мы хотим узнать новые векторные скорости каждого объекта после столкновения. Вывод уравнений, представленных здесь, содержится также в файле colli-sion_reaction
Пневмостойка, ежедневно 7.00 запчасти ауди а8.
Hosted by uCoz